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Spotify?

Spotify brings you the right music for every moment — on
your computer, your mobile, your tablet, your home
entertainment system and more.

> 60M active users (last 30 days) ke e st o
> 1.5B playlists - | |
> 30M songs

Available in 58 countries
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Microservices, Async and Me

My background

d Currently building infrastructure at Spotify:
d service discovery
d routing infrastructure
4 service development framework
1 About 6 years of microservices (4 Shopzilla, 2 Spotify)
d Similar sizes: 3-5 datacenters, a few thousand servers, more than 100 services

Async code

d Shopzilla sites: page rendering, ~10-40 service calls/page
d Shopzilla inventory: high-performance VoltDB calls
d Spotify view aggregation services, ~5-10 service calls/request
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Why write asynchronous code?
Why not write asynchronous code?
I’m going to do it, how?

1 Code examples
Jd Frameworks




Why Asynchronous?

d Synchronous => throughput limited by
thread/worker count

Jd Synchronous => resources used for the
wrong things

4 Asynchronous => latency improvements
through parallelism

4 Async means ‘less active waiting’




(A)synchronicity in a Restaurant




Async and Microservices

Typical microservices architecture:

Clients Backend Services
Aggregation/
Fan-out

Difference monolithic => microservices is latency; what used to be a method call is a remote call across the
network



Async at Shopzilla

1 www.shopzilla.co.uk/digital-tv/products/
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Async at Shopzilla

Shopzilla Async Framework

d Latency to start of render critical for revenue
4 Framework put futures into a map, get actual results out
d Problems:

d get = null - why?

d get => block, mistakes delayed start of render Category Merchants
d lack of visibility - what gets put into the map? Is it used?
Created PageFlow *
J explicitly specifying call graph as data structure

d clunky syntax, tightly tied to Shopzilla infrastructure
d ‘accidentally’ moved concurrency into framework, great



Shopazilla Inventory

d Read/write logic for VoltDB databases
d In-memory, transactional, high-performance DB
d 100k+ writes/sec => async needed for performance

d Futures.transform() makes a sequence nested and harder to read
Update Y

Created library for chaining invocations

d Simpler, less tied to infrastructure than PageFlow Update X
d Just a chain, no fan-out/fan-in




Async at Spotify

Thinner Clients

4 Move logic from clients to backend
d Easier, faster deployment
4 More mobile-friendly
d “View aggregation services”
d Many downstream service invocations, more
complex graphs
4 Use of ListenableFutures makes code complex

Created Trickle with Rouzbeh Delavari
1 Open source (https://github.com/spotify/trickle/)

4 Explicit graph like PageFlow
d Generic like the VoltDB library



https://github.com/spotify/trickle/
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Why not asynchronous?

Because it’s harder to write, read, test and reason about

d Business logic obscured by concurrency management overhead

4 Concurrency primitives can be invasive. What if somebody by accident does a get() instead of a
transform?

d Typesafe fan-in hard (Futures.allAsList(), FuncN, BiConsumer/BiFunction, etc.)

d Testing - flakiness, exception handling, more execution paths

d Understanding errors/call stacks

d (Graceful degradation in case of errors)



Code Examples!

Input: Endpoint Input: Endpoint

Read Current Read Current

Update
Endpoint

Update
Endpoint

Maybe Update
timestamp

Return Interval

Return Interval




Subjective Comparison:
ListenableFutures

https://code.google.com/p/quava-libraries/wiki/ListenableFutureExplained
Pros

d low-level: not much magic

d (mostly) familiar concepts

d nice and small API

d good interoperability with other frameworks since futures are so common

Cons

Jd verbose
Jd concurrency management obscures business logic

d low-level: concurrency is in your face, easier to make mistakes
d fan-in is messy


https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained
https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained

Subjective Comparison:
RxJava

Rx = Reactive Extensions
http://reactivex.io/

Pros

feature-rich, especially for streams of data

separates concurrency from business logic
easy to combine results, do fallbacks, etc.

clean code

LU UL

Cons

d unfamiliar concepts/high learning threshold
d large and clumsy API (cf #methods on Observable interface)
d “everything is a collection”


http://reactivex.io/

Subjective Comparison:

https://github.com/spotify/trickle/

separates concurrency from business logic

nice error handling + reporting support

developer-friendly API

good interoperability with regular Futures/other frameworks

LU UL

weird to do graph wiring in data
not in widespread use

L L



https://github.com/spotify/trickle/
https://github.com/spotify/trickle/

Many subjective comparisons

Result of engineers at Spotify coding up a pretty small async graph

Technology Get going | Focus on core Cleanness
ListenableFutures 4.0 3.0 2.7
RxJava 2.8 3.7 3.1
Trickle 3.9 3.8 4.4

Let’s get more data: try it yourself at https://github.com/pettermahlen/async-shootout and fill in the form!



https://github.com/pettermahlen/async-shootout

Choices, choices

d Akka

d actors

d cool, but sort of all-or-nothing - greenfield only?
4 CompletionStage in Java 8

d allows chaining of asynchronous calls

d fan-in is harder than Rx or Trickle
d Disruptor

4 Not just super-high-performance; allows

constructing call graphs
d also all-or-nothing, at least within single service




Picking your Framework

Consider:

J your migration path, if any

— 1 how to integrate with third-party tools

1 the learning curve

J the expected level of concurrency expertise of devs

... and above all, make sure you need it!
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public class SynchronousHeartbeat {
- private final SynchronousStore store;
private final long heartbeatIntervalMillis;

[j public SynchronousHeartbeat(SynchronousStore store, long heartbeatIntervalMillis) {
? this.store = store;

g this.heartbeatIntervalMillis = heartbeatIntervalMillis;
S,

[ﬁ public long heartbeat(final Endpoint endpoint) {
// fetch what we currently know about the endpoint
RegistryEntry previous = store.get(endpoint);

// no matter what, flag it as known to be UP right now
store.put(createEntry(endpoint, UP));

// 1f 1t wasn't known to be up before, that's a change to the current state of things,
// which means we need to update the last change timestamp.
if (!isPresent(previous) || !isUp(previous)) {
store.updatelLastChangeTimestamp();
s
. // let the caller know when he's next expected to be in touch
§ return heartbeatIntervalMillis;
a }

}



public class ListenableFutureHeartbeat 1
- private final Store store;
private final long heartbeatIntervalMillis;

[j public ListenableFutureHeartbeat(Store store, long heartbeatIntervalMillis) {

this.store = store;
this.heartbeatIntervalMillis = heartbeatIntervalMillis:

50

[j public ListenableFuture<Long> heartbeat(final Endpoint endpoint) {
: ListenableFuture<RegistryEntry> previousFuture = store.get(endpoint);

return Futures.transform(
previousFuture,
(AsyncFunction<RegistryEntry, Long>) previous —> {
final ListenableFuture<Boolean> upFuture = store.put(createEntry(endpoint, UP));

ListenableFuture<Void> serialNumberFuture
Futures.transform(upFuture,
(AsyncFunction<Boolean, Void>) IGNORED —> {
if (!isPresent(previous) || !isUp(previous)) {
return store.updateLastChangeTimestamp();

}

return Futures.immediateFuture(null);

});

return Futures.transform(serialNumberFuture,
(AsyncFunction<Void, Long>) IGNORED —>
Futures.immediateFuture(heartbeatIntervalMillis));

};

A}

¥

- // NOTE:

. // — noise level

. // — 'pretend' transforms

g// — 1gnoring inputs to handle chaining



[jclass ScalaHeartbeat(store: ScalaStore, heartbeatIntervalMillis: Long) {

def createEntry(endpoint: Endpoint, state: State): RegistryEntry = 2?7
def isPresent(entry: RegistryEntry): Boolean = ??7?
def isUp(entry: RegistryEntry): Boolean = ?7?

) def heartbeat(endpoint: Endpoint): Future[Long] = {
for {

previous <- store.get(endpoint)
<— store.put(createEntry(endpoint, UP))

_ <— if (!isPresent(previous) || !isUp(previous))
store.updateLastChangeTimestamp()
else

Future.successful(())
} yield heartbeatIntervalMillis

}

}

—trait ScalaStore {

- def get(endpoint: Endpoint):Future[RegistryEntry] = 2?7
def put(entry: RegistryEntry): Future[Boolean] = ??7?
def updatelLastChangeTimestamp():Future[Void] = ???




public class RxHeartbeat {
- private final ObservableStore store;
private final long heartbeatIntervalMillis;

[j public RxHeartbeat(ObservableStore store, long heartbeatIntervalMillis) {

this.store = store:
this.heartbeatIntervalMillis = heartbeatIntervalMillis;

50

lj public Observable<Long> heartbeat(Endpoint endpoint) {
f Observable<RegistryEntry> previous = store.get(endpoint);

//
/7
/7
7/
//
/7

}

Observable<Boolean> up = previous.flatMap(IGNORED —> store.put(createEntry(endpoint, UP)));

return previous
.zipWith(up, (RegistryEntry previousEntry, Boolean IGNORED) —> {
if (!isPresent(previousEntry) || !isUp(previousEntry)) {
return store.updateLastChangeTimestamp();

}

return null;

1)
.map(IGNORED —> heartbeatIntervalMillis);

NOTE:

rx = reactive extensions

reduced noise level

"functional' method names

ignoring inputs to handle chaining

method count on Observable => discoverabilit



_Epublic class TrickleHeartbeat {
- private final Input<Endpoint> endpointInput;
private final Graph<Long> heartbeatGraph;

jj public TrickleHeartbeat(Store store, long heartbeatIntervalMillis) {

3

//
//
7/
//
7/

}

endpointInput = Input.named(“endpoint");

Graph<RegistryEntry> previous = call(store::get).with(endpointInput);

Graph<Boolean> up = call((Endpoint endpoint) —> store.put(createEntry(endpoint, UP)))
.with(endpointInput)
.after(previous);

Graph<Void> timestamp = call(
(RegistryEntry previousEntry) —> {

if (!isPresent(previousEntry) || !'isUp(previousEntry)) {
return store.updateLastChangeTimestamp();
}
return immediateFuture(null);
})
.with(previous)
.after(up);

heartbeatGraph = call(() —> immediateFuture(heartbeatIntervalMillis)).after(timestamp);

public ListenableFuture<Long> heartbeat(final Endpoint endpoint) <{

}

return heartbeatGraph.bind(endpointInput, endpoint).run();

NOTE:

noisier than Rx

what's with all the 'Graph':s?
optional names

IDE help building graphs



Calling an asynchronous method

exceptions
timing



Testing tips

Some code A Test
public ListenableFuture<Gherkin> serve() { public void shouldDeleteFroobishesWhenCountIsZero()
ListenableFuture<Integer> count = counter.count(); throws Exception {
return Futures.transform(count, new Function<>() { when(counter.count()).thenReturn(intFuture(0));
public Gherkin apply(Integer count) { service.serve().get(); // <--- terminate the future
if (count == 0) {
froobishes.delete(); verify(froobishes).delete();
b b
return new Gherkin(count);
by
r)i

»


http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
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http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
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