Why asynchr¢

a microservice:

comparison of frameworks that help you
do it

Petter Mahlén

Spotify?

Spotify brings you the right music for every moment — on
your computer, your mobile, your tablet, your home
entertainment system and more.

> 60M active users (last 30 days) ke e st o
> 1.5B playlists - | |
> 30M songs

Available in 58 countries

HpEpEpN

Microservices, Async and Me

My background

d Currently building infrastructure at Spotify:
d service discovery
d routing infrastructure
4 service development framework
1 About 6 years of microservices (4 Shopzilla, 2 Spotify)
d Similar sizes: 3-5 datacenters, a few thousand servers, more than 100 services

Async code

d Shopzilla sites: page rendering, ~10-40 service calls/page
d Shopzilla inventory: high-performance VoltDB calls
d Spotify view aggregation services, ~5-10 service calls/request

Topics covered

NV

‘f:r

w"’/i“ﬁ

Why write asynchronous code?
Why not write asynchronous code?
I’m going to do it, how?

1 Code examples
Jd Frameworks

Why Asynchronous?

d Synchronous => throughput limited by
thread/worker count

Jd Synchronous => resources used for the
wrong things

4 Asynchronous => latency improvements
through parallelism

4 Async means ‘less active waiting’

(A)synchronicity in a Restaurant

Async and Microservices

Typical microservices architecture:

Clients Backend Services
Aggregation/
Fan-out

Difference monolithic => microservices is latency; what used to be a method call is a remote call across the
network

Async at Shopzilla

1 www.shopzilla.co.uk/digital-tv/products/

=)= ShOpZi"O.co.uk

Home » Electronics » Televisions » Digital Tv

You're in Televisions

See matches in:

Television Aerials

Satellite Receivers & Set Top

Boxes

Audio & Video Cables &

Adapters

Narrow this list by:

Technology Type ¥

Plasma
LCD

Brand v

Toshiba
Bush
Cello
Panasonic
Sony
Samsung
LG

more

Aspect Ratio v
Widescreen (16:9)

1-20 of 670 results

digital tv Q

Related Searches: waterproof bathroom tv lcd mirror d..., sony tv » | See all departments

Polaroid SSDV2811-11 - 28 in. ...

Enjoy excellent picture quality when connected to an HD source and playing HD ... more

Details

Avtex L165DRS Widescreen Digit...

Complete with a three year warranty, the beautifully styled Avtex Super-slim W... more

Details

Cello C22230DVB 22-inch Widesc...
22Inch LED TV Super slim design Built-in Freeview digital tuner Full HD 1080p ... more
Details

Samsung 32 inch Series 4 H4000...

FREE Next Day Delivery With Collect+

**HALF-PRICE Belkin HDMI cable - remember to add item number 4GVAG to your bas... more
Details

LG 50PB690V - 50 in. plasma 3D...

The smart platform brings together all of your favorite content. Enjoy breatht... more

Details

Sortby Relevance

ASDA

Store rating

amazonco.uk

amazonco.uk

ASDA

Store rating

o

£159.00

Free Delivery

Go to store

£299.95

Free Delivery

Go to st

!

£135.00

Free Delivery

Go to st

!

£219.00

Delivery: £3.95
Go to st

!

£649.00

Delivery: £2.95
Go to st

!

Async at Shopzilla

Shopzilla Async Framework

d Latency to start of render critical for revenue
4 Framework put futures into a map, get actual results out
d Problems:

d get = null - why?

d get => block, mistakes delayed start of render Category Merchants
d lack of visibility - what gets put into the map? Is it used?
Created PageFlow *
J explicitly specifying call graph as data structure

d clunky syntax, tightly tied to Shopzilla infrastructure
d ‘accidentally’ moved concurrency into framework, great

Shopazilla Inventory

d Read/write logic for VoltDB databases
d In-memory, transactional, high-performance DB
d 100k+ writes/sec => async needed for performance

d Futures.transform() makes a sequence nested and harder to read
Update Y

Created library for chaining invocations

d Simpler, less tied to infrastructure than PageFlow Update X
d Just a chain, no fan-out/fan-in

Async at Spotify

Thinner Clients

4 Move logic from clients to backend
d Easier, faster deployment
4 More mobile-friendly
d “View aggregation services”
d Many downstream service invocations, more
complex graphs
4 Use of ListenableFutures makes code complex

Created Trickle with Rouzbeh Delavari
1 Open source (https://github.com/spotify/trickle/)

4 Explicit graph like PageFlow
d Generic like the VoltDB library

https://github.com/spotify/trickle/

O, obskla

MAIN Show All Resulis...

Brows >

Activit
I11]] J)) Du kommer aldrig und...
Radio ||| Album - Obskia

YOUR MUS C

Alla snubbar vill ju va Polack
Obskla

Songs

Album ;
Helt utan kérlek

4)) PAUSE
Artists Obskla

Local l'ile Girigheten
Obskla

PLAYLISTS

Starre |

- Obsklassen
Tips fcr . ree \Women

Recen ly
‘aret o

80-ars fe Du kommer aldrig und...

alt-J - ‘\n Obsklasse mpoi ary Ground

Favvo DBE Périplattor for svin wid " ‘ou Fight For My Love?
:Hﬂ]gs[q Obskla

{ < D& sjélv och 13t andra ... jh Bell Stepper

Nya

Obskla

st Or e Drink

ne i My Home

New Flar itlen ent

| Guess I'll Take

o That Black Bat Licorice
Midlake

I ™

Spotify Premium

FOLLOWING

Jack White

Jack White

Jack White

Jack White

Jack White

Jack White

Jack White

Jack White

Jack White

Lazaretto

Lazaretto

Lazaretto

Lazaretto

Lazaretto

Lazaretto

Lazaretto

Lazaretto

Lazaretto

Why not asynchronous?

Because it’s harder to write, read, test and reason about

d Business logic obscured by concurrency management overhead

4 Concurrency primitives can be invasive. What if somebody by accident does a get() instead of a
transform?

d Typesafe fan-in hard (Futures.allAsList(), FuncN, BiConsumer/BiFunction, etc.)

d Testing - flakiness, exception handling, more execution paths

d Understanding errors/call stacks

d (Graceful degradation in case of errors)

Code Examples!

Input: Endpoint Input: Endpoint

Read Current Read Current

Update
Endpoint

Update
Endpoint

Maybe Update
timestamp

Return Interval

Return Interval

Subjective Comparison:
ListenableFutures

https://code.google.com/p/quava-libraries/wiki/ListenableFutureExplained
Pros

d low-level: not much magic

d (mostly) familiar concepts

d nice and small API

d good interoperability with other frameworks since futures are so common

Cons

Jd verbose
Jd concurrency management obscures business logic

d low-level: concurrency is in your face, easier to make mistakes
d fan-in is messy

https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained
https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained

Subjective Comparison:
RxJava

Rx = Reactive Extensions
http://reactivex.io/

Pros

feature-rich, especially for streams of data

separates concurrency from business logic
easy to combine results, do fallbacks, etc.

clean code

LU UL

Cons

d unfamiliar concepts/high learning threshold
d large and clumsy API (cf #methods on Observable interface)
d “everything is a collection”

http://reactivex.io/

Subjective Comparison:

https://github.com/spotify/trickle/

separates concurrency from business logic

nice error handling + reporting support

developer-friendly API

good interoperability with regular Futures/other frameworks

LU UL

weird to do graph wiring in data
not in widespread use

L L

https://github.com/spotify/trickle/
https://github.com/spotify/trickle/

Many subjective comparisons

Result of engineers at Spotify coding up a pretty small async graph

Technology Get going | Focus on core Cleanness
ListenableFutures 4.0 3.0 2.7
RxJava 2.8 3.7 3.1
Trickle 3.9 3.8 4.4

Let’s get more data: try it yourself at https://github.com/pettermahlen/async-shootout and fill in the form!

https://github.com/pettermahlen/async-shootout

Choices, choices

d Akka

d actors

d cool, but sort of all-or-nothing - greenfield only?
4 CompletionStage in Java 8

d allows chaining of asynchronous calls

d fan-in is harder than Rx or Trickle
d Disruptor

4 Not just super-high-performance; allows

constructing call graphs
d also all-or-nothing, at least within single service

Picking your Framework

Consider:

J your migration path, if any

— 1 how to integrate with third-party tools

1 the learning curve

J the expected level of concurrency expertise of devs

... and above all, make sure you need it!

- — e S ey,

I.:_'-'?'::_'-':I:- '}-F‘\:_" s B iy s i | Iy

=
I___|_'J ,:1.!:-|.|J|é e

== | -
Ill"
I

i ‘l_|-
PR

- _Jl"-_.".‘

e A

public class SynchronousHeartbeat {
- private final SynchronousStore store;
private final long heartbeatIntervalMillis;

[j public SynchronousHeartbeat(SynchronousStore store, long heartbeatIntervalMillis) {
? this.store = store;

g this.heartbeatIntervalMillis = heartbeatIntervalMillis;
S,

[ﬁ public long heartbeat(final Endpoint endpoint) {
// fetch what we currently know about the endpoint
RegistryEntry previous = store.get(endpoint);

// no matter what, flag it as known to be UP right now
store.put(createEntry(endpoint, UP));

// 1f 1t wasn't known to be up before, that's a change to the current state of things,
// which means we need to update the last change timestamp.
if (!isPresent(previous) || !isUp(previous)) {
store.updatelLastChangeTimestamp();
s
. // let the caller know when he's next expected to be in touch
§ return heartbeatIntervalMillis;
a }

}

public class ListenableFutureHeartbeat 1
- private final Store store;
private final long heartbeatIntervalMillis;

[j public ListenableFutureHeartbeat(Store store, long heartbeatIntervalMillis) {

this.store = store;
this.heartbeatIntervalMillis = heartbeatIntervalMillis:

50

[j public ListenableFuture<Long> heartbeat(final Endpoint endpoint) {
: ListenableFuture<RegistryEntry> previousFuture = store.get(endpoint);

return Futures.transform(
previousFuture,
(AsyncFunction<RegistryEntry, Long>) previous —> {
final ListenableFuture<Boolean> upFuture = store.put(createEntry(endpoint, UP));

ListenableFuture<Void> serialNumberFuture
Futures.transform(upFuture,
(AsyncFunction<Boolean, Void>) IGNORED —> {
if (!isPresent(previous) || !isUp(previous)) {
return store.updateLastChangeTimestamp();

}

return Futures.immediateFuture(null);

});

return Futures.transform(serialNumberFuture,
(AsyncFunction<Void, Long>) IGNORED —>
Futures.immediateFuture(heartbeatIntervalMillis));

};

A}

¥

- // NOTE:

. // — noise level

. // — 'pretend' transforms

g// — 1gnoring inputs to handle chaining

[jclass ScalaHeartbeat(store: ScalaStore, heartbeatIntervalMillis: Long) {

def createEntry(endpoint: Endpoint, state: State): RegistryEntry = 2?7
def isPresent(entry: RegistryEntry): Boolean = ??7?
def isUp(entry: RegistryEntry): Boolean = ?7?

) def heartbeat(endpoint: Endpoint): Future[Long] = {
for {

previous <- store.get(endpoint)
<— store.put(createEntry(endpoint, UP))

_ <— if (!isPresent(previous) || !isUp(previous))
store.updateLastChangeTimestamp()
else

Future.successful(())
} yield heartbeatIntervalMillis

}

}

—trait ScalaStore {

- def get(endpoint: Endpoint):Future[RegistryEntry] = 2?7
def put(entry: RegistryEntry): Future[Boolean] = ??7?
def updatelLastChangeTimestamp():Future[Void] = ???

public class RxHeartbeat {
- private final ObservableStore store;
private final long heartbeatIntervalMillis;

[j public RxHeartbeat(ObservableStore store, long heartbeatIntervalMillis) {

this.store = store:
this.heartbeatIntervalMillis = heartbeatIntervalMillis;

50

lj public Observable<Long> heartbeat(Endpoint endpoint) {
f Observable<RegistryEntry> previous = store.get(endpoint);

//
/7
/7
7/
//
/7

}

Observable<Boolean> up = previous.flatMap(IGNORED —> store.put(createEntry(endpoint, UP)));

return previous
.zipWith(up, (RegistryEntry previousEntry, Boolean IGNORED) —> {
if (!isPresent(previousEntry) || !isUp(previousEntry)) {
return store.updateLastChangeTimestamp();

}

return null;

1)
.map(IGNORED —> heartbeatIntervalMillis);

NOTE:

rx = reactive extensions

reduced noise level

"functional' method names

ignoring inputs to handle chaining

method count on Observable => discoverabilit

_Epublic class TrickleHeartbeat {
- private final Input<Endpoint> endpointInput;
private final Graph<Long> heartbeatGraph;

jj public TrickleHeartbeat(Store store, long heartbeatIntervalMillis) {

3

//
//
7/
//
7/

}

endpointInput = Input.named(“endpoint");

Graph<RegistryEntry> previous = call(store::get).with(endpointInput);

Graph<Boolean> up = call((Endpoint endpoint) —> store.put(createEntry(endpoint, UP)))
.with(endpointInput)
.after(previous);

Graph<Void> timestamp = call(
(RegistryEntry previousEntry) —> {

if (!isPresent(previousEntry) || !'isUp(previousEntry)) {
return store.updateLastChangeTimestamp();
}
return immediateFuture(null);
})
.with(previous)
.after(up);

heartbeatGraph = call(() —> immediateFuture(heartbeatIntervalMillis)).after(timestamp);

public ListenableFuture<Long> heartbeat(final Endpoint endpoint) <{

}

return heartbeatGraph.bind(endpointInput, endpoint).run();

NOTE:

noisier than Rx

what's with all the 'Graph':s?
optional names

IDE help building graphs

Calling an asynchronous method

exceptions
timing

Testing tips

Some code A Test
public ListenableFuture<Gherkin> serve() { public void shouldDeleteFroobishesWhenCountIsZero()
ListenableFuture<Integer> count = counter.count(); throws Exception {
return Futures.transform(count, new Function<>() { when(counter.count()).thenReturn(intFuture(0));
public Gherkin apply(Integer count) { service.serve().get(); // <--- terminate the future
if (count == 0) {
froobishes.delete(); verify(froobishes).delete();
b b
return new Gherkin(count);
by
r)i

»

http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)

